Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables studying complex macromolecules with low solubility. Compared to solution NMR, few tools exist for biomacromolecule ssNMR data analysis. A key challenge is assigning spin systems due to low peak dispersion. Broad peaks from large dipolar couplings and shift anisotropy cause significant overlap and missing peaks. To address this, we introduce ssPINE-POKY, a user-friendly graphical user interface (GUI) integrated into the POKY suite. ssPINE-POKY streamlines the automation of spin system recognition and chemical shift assignment in multidimensional ssNMR spectra by integrating the ssPINE algorithm within an intuitive interface. The platform allows easy and fast job submission, real-time result visualization, and enhanced analysis through additional built-in tools, significantly improving the efficiency of ssNMR data interpretation.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure–function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called “ssPINE”. The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form.more » « less
-
Gorodkin, Jan (Ed.)Abstract Summary The need for an efficient and cost-effective method is compelling in biomolecular NMR. To tackle this problem, we have developed the Poky suite, the revolutionized platform with boundless possibilities for advancing research and technology development in signal detection, resonance assignment, structure calculation, and relaxation studies with the help of many automation and user interface tools. This software is extensible and scalable by scripting and batching as well as providing modern graphical user interfaces and a diverse range of modules right out of the box. Availability Poky is freely available to non-commercial users at https://poky.clas.ucdenver.edu. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
